Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.280
Filtrar
1.
Elife ; 122024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634460

RESUMO

Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.


Assuntos
Drosophila , Neurônios , Animais , Asseio Animal/fisiologia , Vias Aferentes , Neurônios/fisiologia , Encéfalo , Drosophila melanogaster/fisiologia
2.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612402

RESUMO

The dorsal root ganglion (DRG) serves as a pivotal site for managing chronic pain through dorsal root ganglion stimulation (DRG-S). In recent years, the DRG-S has emerged as an attractive modality in the armamentarium of neuromodulation therapy due to its accessibility and efficacy in alleviating chronic pain refractory to conventional treatments. Despite its therapeutic advantages, the precise mechanisms underlying DRG-S-induced analgesia remain elusive, attributed in part to the diverse sensory neuron population within the DRG and its modulation of both peripheral and central sensory processing pathways. Emerging evidence suggests that DRG-S may alleviate pain by several mechanisms, including the reduction of nociceptive signals at the T-junction of sensory neurons, modulation of pain gating pathways within the dorsal horn, and regulation of neuronal excitability within the DRG itself. However, elucidating the full extent of DRG-S mechanisms necessitates further exploration, particularly regarding its supraspinal effects and its interactions with cognitive and affective networks. Understanding these mechanisms is crucial for optimizing neurostimulation technologies and improving clinical outcomes of DRG-S for chronic pain management. This review provides a comprehensive overview of the DRG anatomy, mechanisms of action of the DRG-S, and its significance in neuromodulation therapy for chronic pain.


Assuntos
Dor Crônica , Humanos , Dor Crônica/terapia , Gânglios Espinais , Manejo da Dor , Vias Aferentes , Células Receptoras Sensoriais
3.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542511

RESUMO

Pulmonary fibrosis results from the deposition and proliferation of extracellular matrix components in the lungs. Despite being an airway disorder, pulmonary fibrosis also has notable effects on the pulmonary vasculature, with the development and severity of pulmonary hypertension tied closely to patient mortality. Furthermore, the anatomical proximity of blood vessels, the alveolar epithelium, lymphatic tissue, and airway spaces highlights the need to identify shared pathogenic mechanisms and pleiotropic signaling across various cell types. Sensory nerves and their transmitters have a variety of effects on the various cell types within the lungs; however, their effects on many cell types and functions during pulmonary fibrosis have not yet been investigated. This review highlights the importance of gaining a new understanding of sensory nerve function in the context of pulmonary fibrosis as a potential tool to limit airway and vascular dysfunction.


Assuntos
Hipertensão Pulmonar , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/metabolismo , Pulmão/metabolismo , Vias Aferentes , Hipertensão Pulmonar/metabolismo , Mucosa Respiratória/metabolismo
4.
Neurophysiol Clin ; 54(1): 102940, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38382141

RESUMO

BACKGROUND: The mechanism of Short-Latency Afferent Inhibition (SAI) is relatively well understood. In contrast, Long-Latency Afferent Inhibition (LAI) has not been as extensively studied as SAI, and its underlying mechanism remains unclear. OBJECTIVE/HYPOTHESIS: This study had two primary objectives: first, to determine the optimal ISIs for LAI measured by amplitude changes (A-LAI) using high-resolution ISI ranges; and second, to compare measurements of LAI by threshold-tracking (T-LAI). METHODS: Twenty-eight healthy volunteers (12 males aged 24- 45 years) participated in the study. Paired peripheral electrical and transcranial magnetic stimulation (TMS) stimuli (TS1mv) were applied at varying (ISIs)- 100, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000 ms. RESULTS: Both A-LAI and T-LAI showed that LAI decreased progressively from a peak at 200 or 250 ms to 1000 ms. Using the A-LAI method, pronounced inhibition was observed at three specific ISIs: 100 ms, 250 ms and 450 ms. When A-LAI values were converted to equivalent threshold changes, they did not differ significantly from T-LAI. Reliability at distinguishing individuals, as indicated by intraclass correlation coefficient (ICC) was greater for A-LAI, with a peak value of 0.82 at 250 ms. CONCLUSION(S): The study demonstrates that ISIs of 100 ms and 250 ms can be reliably used in amplitude measurement LAI. The study demonstrates that both LAI measurements record a similar decline of inhibition with increasing ISI.


Assuntos
Inibição Neural , Estimulação Magnética Transcraniana , Masculino , Humanos , Vias Aferentes/fisiologia , Reprodutibilidade dos Testes , Inibição Neural/fisiologia , Tempo de Reação/fisiologia , Potencial Evocado Motor/fisiologia
5.
J Neurosci Methods ; 405: 110081, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369028

RESUMO

BACKGROUND: Existing methods identify only ≈10 Aδ-fibers in human sensory nerves per recording. This study examines methods to increase the detection of Aδ-fibers. NEW METHOD: Two to 20 averages of 500 replicate responses to epidermal nerve stimulation are obtained. Pairs of different averages are constructed. Each pair is analyzed with algorithms applied to amplitude and frequency to detect replication of responses to stimulation as "simultaneous similarities in two averages" (SS2AVs) at ≥99.5th percentile of control. In a pair of averages the latencies of amplitude and frequency SS2AVs for the same response to stimulation may differ by ≤0.25 ms. Therefore, Aδ-fibers are identified by the 0.25 ms moving sum of SS2AV latencies of the pairs of averages. RESULTS: Increasing averages increases pairs of different averages and detection of Aδ-fibers: from 2 to 10 Aδ-fibers with two averages (one pair) to >50 Aδ-fibers with 12-20 averages (66-190 pairs). COMPARISON WITH EXISTING METHOD(S): Existing methods identify ≤10 Aδ-fibers in 10 averages/45 pairs with the medians of amplitude and frequency algorithms applied to all 45 pairs. This study identifies Aδ-fibers (i) by applying these algorithms at the 99.5th percentile of control, (ii) to each pair of averages and (iii) by the 0.25 ms sum of algorithm identified events (SS2AVs) in all pairs. These three changes significantly increase the detection of Aδ-fibers, e.g., in 10 averages/45pairs from 10 to 45. CONCLUSIONS: Three modifications of existing methods can increase the detection of Aδ-fibers to an amount suitable (>50 with ≥12 averages) for statistical comparison of different nerves.


Assuntos
Fibras Nervosas Mielinizadas , Fibras Nervosas Amielínicas , Humanos , Fibras Nervosas Amielínicas/fisiologia , Vias Aferentes
6.
Eur J Neurosci ; 59(8): 2087-2101, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38234172

RESUMO

Understanding how inhibitory pathways influence motor cortical activity during fatiguing contractions may provide valuable insight into mechanisms associated with multiple sclerosis (MS) muscle activation. Short-latency afferent inhibition (SAI) reflects inhibitory interactions between the somatosensory cortex and the motor cortex, and although SAI is typically reduced with MS, it is unknown how SAI is regulated during exercise-induced fatigue. The current study examined how SAI modulates motor evoked potentials (MEPs) during fatiguing contractions. Fourteen people with relapsing-remitting MS (39 ± 6 years, nine female) and 10 healthy individuals (36 ± 6 years, six female) participated. SAI was induced by stimulation of the median nerve that was paired with TMS over the motor representation of the abductor pollicis brevis. A contraction protocol was employed that depressed force generating capacity using a sustained 3-min 15% MVC, immediately followed by a low-intensity (15% MVC) intermittent contraction protocol so that MEP and SAI could be measured during the rest phases of each duty cycle. Similar force, electromyography and MEP responses were observed between groups. However, the MS group had significantly reduced SAI during the contraction protocol compared to the healthy control group (p < .001). Despite the MS group reporting greater scores on the Fatigue Severity Scale and Modified Fatigue Impact Scale, these scales did not correlate with inhibitory measures. As there were no between-group differences in SSEPs, MS-related SAI differences during the fatiguing contractions were most likely associated with disease-related changes in central integration.


Assuntos
Esclerose Múltipla , Fadiga Muscular , Humanos , Feminino , Inibição Neural/fisiologia , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Contração Muscular/fisiologia , Estimulação Elétrica , Vias Aferentes/fisiologia
7.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256202

RESUMO

Homeostatic maintenance is essential for pulp function. Disrupting pulp homeostasis may lead to pulp degeneration, such as fibrosis and calcifications. Sensory nerves constitute a crucial component of the dental pulp. However, the precise involvement of sensory nerves in pulp homeostasis remains uncertain. In this study, we observed the short-term and long-term histological changes in the dental pulp after inferior alveolar nerve transection. Additionally, we cultured primary dental pulp cells (DPCs) from the innervated and denervated groups and compared indicators of cellular senescence and cellular function. The results revealed that pulp fibrosis occurred at 2 w after the operation. Furthermore, the pulp area, as well as the height and width of the pulp cavity, showed accelerated reductions after sensory denervation. Notably, the pulp area at 16 w after the operation was comparable to that of 56 w old rats. Sensory denervation induced excessive extracellular matrix (ECM) deposition and increased predisposition to mineralization. Furthermore, sensory denervation promoted the senescence of DPCs. Denervated DPCs exhibited decelerated cell proliferation, arrest in the G2/M phase of the cell cycle, imbalance in the synthesis and degradation of ECM, and enhanced mineralization. These findings indicate that sensory nerves play an essential role in pulp homeostasis maintenance and dental pulp cell fate decisions, which may provide novel insights into the prevention of pulp degeneration.


Assuntos
Calcinose , Doenças da Polpa Dentária , Animais , Ratos , Polpa Dentária , Vias Aferentes , Homeostase , Fibrose , Denervação
8.
J Comp Neurol ; 532(2): e25546, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37837642

RESUMO

The distal colon and rectum (colorectum) are innervated by spinal and vagal afferent pathways. The central circuits into which vagal and spinal afferents relay colorectal nociceptive information remain to be comparatively assessed. To address this, regional colorectal retrograde tracing and colorectal distension (CRD)-evoked neuronal activation were used to compare the circuits within the dorsal vagal complex (DVC) and dorsal horn (thoracolumbar [TL] and lumbosacral [LS] spinal levels) into which vagal and spinal colorectal afferents project. Vagal afferent projections were observed in the nucleus tractus solitarius (NTS), area postrema (AP), and dorsal motor nucleus of the vagus (DMV), labeled from the rostral colorectum. In the NTS, projections were opposed to catecholamine and pontine parabrachial nuclei (PbN)-projecting neurons. Spinal afferent projections were labeled from rostral through to caudal aspects of the colorectum. In the dorsal horn, the number of neurons activated by CRD was linked to pressure intensity, unlike in the DVC. In the NTS, 13% ± 0.6% of CRD-activated neurons projected to the PbN. In the dorsal horn, at the TL spinal level, afferent input was associated with PbN-projecting neurons in lamina I (LI), with 63% ± 3.15% of CRD-activated neurons in LI projecting to the PbN. On the other hand, at the LS spinal level, only 18% ± 0.6% of CRD-activated neurons in LI projected to the PbN. The collective data identify differences in the central neuroanatomy that support the disparate roles of vagal and spinal afferent signaling in the facilitation and modulation of colorectal nociceptive responses.


Assuntos
Neoplasias Colorretais , Nervo Vago , Camundongos , Animais , Vias Aferentes/fisiologia , Neurônios , Corno Dorsal da Medula Espinal , Neoplasias Colorretais/metabolismo , Medula Espinal/metabolismo , Neurônios Aferentes/fisiologia
9.
J Neurosci ; 44(6)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37968120

RESUMO

In higher sensory brain regions, slow oscillations (0.5-5 Hz) associated with quiet wakefulness and attention modulate multisensory integration, predictive coding, and perception. Although often assumed to originate via thalamocortical mechanisms, the extent to which subcortical sensory pathways are independently capable of slow oscillatory activity is unclear. We find that in the first station for auditory processing, the cochlear nucleus, fusiform cells from juvenile mice (of either sex) generate robust 1-2 Hz oscillations in membrane potential and exhibit electrical resonance. Such oscillations were absent prior to the onset of hearing, intrinsically generated by hyperpolarization-activated cyclic nucleotide-gated (HCN) and persistent Na+ conductances (NaP) interacting with passive membrane properties, and reflected the intrinsic resonance properties of fusiform cells. Cx36-containing gap junctions facilitated oscillation strength and promoted pairwise synchrony of oscillations between neighboring neurons. The strength of oscillations were strikingly sensitive to external Ca2+, disappearing at concentrations >1.7 mM, due in part to the shunting effect of small-conductance calcium-activated potassium (SK) channels. This effect explains their apparent absence in previous in vitro studies of cochlear nucleus which routinely employed high-Ca2+ extracellular solution. In contrast, oscillations were amplified in reduced Ca2+ solutions, due to relief of suppression by Ca2+ of Na+ channel gating. Our results thus reveal mechanisms for synchronous oscillatory activity in auditory brainstem, suggesting that slow oscillations, and by extension their perceptual effects, may originate at the earliest stages of sensory processing.


Assuntos
Cálcio , Núcleo Coclear , Camundongos , Animais , Cálcio/metabolismo , Núcleo Coclear/fisiologia , Neurônios/fisiologia , Potenciais da Membrana/fisiologia , Vias Aferentes/fisiologia
10.
Clin Neurophysiol ; 157: 15-24, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016262

RESUMO

OBJECTIVE: To compressively investigate sensorimotor integration in the cranial-cervical muscles in healthy adults. METHODS: Short- (SAI) and long-latency afferent (LAI) inhibition were probed in the anterior digastric (AD), the depressor anguli oris (DAO) and upper trapezius (UT) muscles. A transcranial magnetic stimulation pulse over primary motor cortex was preceded by peripheral stimulation delivered to the trigeminal, facial and accessory nerves using interstimulus intervals of 15-25 ms and 100-200 ms for SAI and LAI respectively. RESULTS: In the AD, both SAI and LAI were detected following trigeminal nerve stimulation, but not following facial nerve stimulation. In the DAO, SAI was observed only following trigeminal nerve stimulation, while LAI depended only on facial nerve stimulation, only at an intensity suprathreshold for the compound motor action potential (cMAP). In the UT we could only detect LAI following accessory nerve stimulation at an intensity suprathreshold for a cMAP. CONCLUSIONS: The results suggest that integration of sensory inputs with motor output is profoundly influenced by the type of sensory afferent involved and by the functional role played by the target muscle. SIGNIFICANCE: Data indicate the importance of taking into account the sensory receptors involved as well as the function of the target muscle when studying sensorimotor integration, both in physiological and neurological conditions.


Assuntos
Potencial Evocado Motor , Inibição Neural , Adulto , Humanos , Inibição Neural/fisiologia , Tempo de Reação/fisiologia , Potencial Evocado Motor/fisiologia , Crânio , Músculos do Pescoço , Estimulação Magnética Transcraniana , Vias Aferentes/fisiologia , Estimulação Elétrica
11.
Semin Cell Dev Biol ; 156: 228-243, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37558522

RESUMO

The communication between the gut and brain is crucial for regulating various essential physiological functions, such as energy balance, fluid homeostasis, immune response, and emotion. The vagal sensory pathway plays an indispensable role in connecting the gut to the brain. Recently, our knowledge of the vagal gut-brain axis has significantly advanced through molecular genetic studies, revealing a diverse range of vagal sensory cell types with distinct peripheral innervations, response profiles, and physiological functions. Here, we review the current understanding of how vagal sensory neurons contribute to gut-brain communication. First, we highlight recent transcriptomic and genetic approaches that have characterized different vagal sensory cell types. Then, we focus on discussing how different subtypes encode numerous gut-derived signals and how their activities are translated into physiological and behavioral regulations. The emerging insights into the diverse cell types and functional properties of vagal sensory neurons have paved the way for exciting future directions, which may provide valuable insights into potential therapeutic targets for disorders involving gut-brain communication.


Assuntos
Encéfalo , Nervo Vago , Vias Aferentes/fisiologia , Encéfalo/fisiologia , Nervo Vago/fisiologia , Células Receptoras Sensoriais , Perfilação da Expressão Gênica
12.
J Neuropathol Exp Neurol ; 83(1): 20-29, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38102789

RESUMO

Neural plasticity occurs within the central and peripheral nervous systems after spinal cord injury (SCI). Although central alterations have extensively been studied, it is largely unknown whether afferent and efferent fibers in pelvic viscera undergo similar morphological changes. Using a rat spinal cord transection model, we conducted immunohistochemistry to investigate afferent and efferent innervations to the kidney, colon, and bladder. Approximately 3-4 weeks after injury, immunostaining demonstrated that tyrosine hydroxylase (TH)-labeled postganglionic sympathetic fibers and calcitonin gene-related peptide (CGRP)-immunoreactive sensory terminals sprout in the renal pelvis and colon. Morphologically, sprouted afferent or efferent projections showed a disorganized structure. In the bladder, however, denser CGRP-positive primary sensory fibers emerged in rats with SCI, whereas TH-positive sympathetic efferent fibers did not change. Numerous CGRP-positive afferents were observed in the muscle layer and the lamina propria of the bladder following SCI. TH-positive efferent inputs displayed hypertrophy with large diameters, but their innervation patterns were sustained. Collectively, afferent or efferent inputs sprout widely in the pelvic organs after SCI, which may be one of the morphological bases underlying functional adaptation or maladaptation.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Traumatismos da Medula Espinal , Ratos , Animais , Vísceras , Traumatismos da Medula Espinal/complicações , Imuno-Histoquímica , Medula Espinal , Vias Aferentes
13.
Sci Rep ; 13(1): 21149, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036579

RESUMO

Spatial acuity is a fundamental property of any sensory system. In the case of the somatosensory system, the two-point discrimination (2PD) test has long been used to investigate tactile spatial resolution. However, the somatosensory system comprises three main mechanoreceptive channels: the slowly adapting channel (SA) responds to steady pressure, the rapidly adapting channel (RA) responds to low-frequency vibration, and the Pacinian channel (PC) responds to high-frequency vibration. The use of mechanical stimuli in the classical 2PD test means that previous studies on tactile acuity have primarily focussed on the pressure-sensitive channel alone, while neglecting other submodalities. Here, we used a novel ultrasound stimulation to systematically investigate the spatial resolution of the two main vibrotactile channels. Contrary to the textbook view of poor spatial resolution for PC-like stimuli, across four experiments we found that high-frequency vibration produced surprisingly good spatial acuity. This effect remained after controlling for interchannel differences in stimulus detectability and perceived intensity. Laser doppler vibrometry experiments confirmed that the acuity of the PC channel was not simply an artifact of the skin's resonance to high-frequency mechanical stimulation. Thus, PC receptors may transmit substantial spatial information, despite their sparse distribution, deep location, and large receptive fields.


Assuntos
Mecanorreceptores , Tato , Tato/fisiologia , Mecanorreceptores/fisiologia , Corpúsculos de Pacini/fisiologia , Vias Aferentes/fisiologia , Vibração
14.
Bone Res ; 11(1): 48, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669953

RESUMO

Recent studies have determined that the nervous system can sense and respond to signals from skeletal tissue, a process known as skeletal interoception, which is crucial for maintaining bone homeostasis. The hypothalamus, located in the central nervous system (CNS), plays a key role in processing interoceptive signals and regulating bone homeostasis through the autonomic nervous system, neuropeptide release, and neuroendocrine mechanisms. These mechanisms control the differentiation of mesenchymal stem cells into osteoblasts (OBs), the activation of osteoclasts (OCs), and the functional activities of bone cells. Sensory nerves extensively innervate skeletal tissues, facilitating the transmission of interoceptive signals to the CNS. This review provides a comprehensive overview of current research on the generation and coordination of skeletal interoceptive signals by the CNS to maintain bone homeostasis and their potential role in pathological conditions. The findings expand our understanding of intersystem communication in bone biology and may have implications for developing novel therapeutic strategies for bone diseases.


Assuntos
Doenças Ósseas , Sistema Nervoso Central , Humanos , Homeostase , Vias Aferentes , Sistema Nervoso Autônomo
15.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628793

RESUMO

The cornea is the window through which we see the world. Corneal clarity is required for vision, and blindness occurs when the cornea becomes opaque. The cornea is covered by unique transparent epithelial cells that serve as an outermost cellular barrier bordering between the cornea and the external environment. Corneal sensory nerves protect the cornea from injury by triggering tearing and blink reflexes, and are also thought to regulate corneal epithelial renewal via unknown mechanism(s). When protective corneal sensory innervation is absent due to infection, trauma, intracranial tumors, surgery, or congenital causes, permanent blindness results from repetitive epithelial microtraumas and failure to heal. The condition is termed neurotrophic keratopathy (NK), with an incidence of 5:10,000 people worldwide. In this report, we review the currently available therapeutic solutions for NK and discuss the progress in our understanding of how the sensory nerves induce corneal epithelial renewal.


Assuntos
Distrofias Hereditárias da Córnea , Fenômenos Fisiológicos do Sistema Nervoso , Humanos , Córnea , Cegueira , Vias Aferentes
16.
Nature ; 621(7979): 543-549, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37558873

RESUMO

External rewards such as food and money are potent modifiers of behaviour1,2. Pioneering studies established that these salient sensory stimuli briefly interrupt the tonic discharge of neurons that produce the neuromodulators dopamine (DA) and acetylcholine (ACh): midbrain DA neurons (DANs) fire a burst of action potentials that broadly elevates DA in the striatum3,4 at the same time that striatal cholinergic interneurons (CINs) produce a characteristic pause in firing5,6. These phasic responses are thought to create unique, temporally limited conditions that motivate action and promote learning7-11. However, the dynamics of DA and ACh outside explicitly rewarded situations remain poorly understood. Here we show that extracellular DA and ACh levels fluctuate spontaneously and periodically at a frequency of approximately 2 Hz in the dorsal striatum of mice and maintain the same temporal relationship relative to one another as that evoked by reward. We show that this neuromodulatory coordination does not arise from direct interactions between DA and ACh within the striatum. Instead, we provide evidence that periodic fluctuations in striatal DA are inherited from midbrain DANs, while striatal ACh transients are driven by glutamatergic inputs, which act to locally synchronize the spiking of CINs. Together, our findings show that striatal neuromodulatory dynamics are autonomously organized by distributed extra-striatal afferents. The dominance of intrinsic rhythms in DA and ACh offers new insights for explaining how reward-associated neural dynamics emerge and how the brain motivates action and promotes learning from within.


Assuntos
Acetilcolina , Corpo Estriado , Dopamina , Animais , Camundongos , Acetilcolina/metabolismo , Potenciais de Ação , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Glutamina/metabolismo , Interneurônios/metabolismo , Motivação , Neostriado/citologia , Neostriado/metabolismo , Recompensa , Vias Aferentes
17.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569621

RESUMO

Capsaicin-sensitive peptidergic sensory nerves mediate triple actions: besides transmitting sensory and pain signals to the central nervous system (afferent function), they also have local and systemic efferent functions [...].


Assuntos
Neurônios Aferentes , Sistema Nervoso Periférico , Humanos , Neurônios Aferentes/fisiologia , Vias Aferentes , Capsaicina/farmacologia , Dor , Inflamação
18.
PLoS One ; 18(7): e0288399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37437060

RESUMO

Autism spectrum disorder (ASD) is a developmental disorder characterized by difficulty in communication and interaction with others. Postmortem studies have shown cerebral neuronal loss and neuroimaging studies show neuronal loss in the amygdala, cerebellum and inter-hemispheric regions of the brain. Recent studies have shown altered tactile discrimination and allodynia on the face, mouth, hands and feet and intraepidermal nerve fiber loss in the legs of subjects with ASD. Fifteen children with ASD (age: 12.00 ± 3.55 years) and twenty age-matched healthy controls (age: 12.83 ± 1.91 years) underwent corneal confocal microscopy (CCM) and quantification of corneal nerve fiber morphology. Corneal nerve fibre density (fibers/mm2) (28.61 ± 5.74 vs. 40.42 ± 8.95, p = 0.000), corneal nerve fibre length (mm/mm2) (16.61 ± 3.26 vs. 21.44 ± 4.44, p = 0.001), corneal nerve branch density (branches/mm2) (43.68 ± 22.71 vs. 62.39 ± 21.58, p = 0.018) and corneal nerve fibre tortuosity (0.037 ± 0.023 vs. 0.074 ± 0.017, p = 0.000) were significantly lower and inferior whorl length (mm/mm2) (21.06 ± 6.12 vs. 23.43 ± 3.95, p = 0.255) was comparable in children with ASD compared to controls. CCM identifies central corneal nerve fiber loss in children with ASD. These findings, urge the need for larger longitudinal studies to determine the utility of CCM as an imaging biomarker for neuronal loss in different subtypes of ASD and in relation to disease progression.


Assuntos
Transtorno do Espectro Autista , Criança , Humanos , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Vias Aferentes , Fibras Nervosas , Hiperalgesia , Microscopia Confocal
19.
Biol Psychol ; 182: 108626, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419401

RESUMO

Each organism must regulate its internal state in a metabolically efficient way as it interacts in space and time with an ever-changing and only partly predictable world. Success in this endeavor is largely determined by the ongoing communication between brain and body, and the vagus nerve is a crucial structure in that dialogue. In this review, we introduce the novel hypothesis that the afferent vagus nerve is engaged in signal processing rather than just signal relay. New genetic and structural evidence of vagal afferent fiber anatomy motivates two hypotheses: (1) that sensory signals informing on the physiological state of the body compute both spatial and temporal viscerosensory features as they ascend the vagus nerve, following patterns found in other sensory architectures, such as the visual and olfactory systems; and (2) that ascending and descending signals modulate one another, calling into question the strict segregation of sensory and motor signals, respectively. Finally, we discuss several implications of our two hypotheses for understanding the role of viscerosensory signal processing in predictive energy regulation (i.e., allostasis) as well as the role of metabolic signals in memory and in disorders of prediction (e.g., mood disorders).


Assuntos
Alostase , Nervo Vago , Humanos , Nervo Vago/fisiologia , Vias Aferentes
20.
Proc Natl Acad Sci U S A ; 120(31): e2217795120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487076

RESUMO

The healthy human cornea is a uniquely transparent sensory tissue where immune responses are tightly controlled to preserve vision. The cornea contains immune cells that are widely presumed to be intraepithelial dendritic cells (DCs). Corneal immune cells have diverse cellular morphologies and morphological alterations are used as a marker of inflammation and injury. Based on our imaging of corneal T cells in mice, we hypothesized that many human corneal immune cells commonly defined as DCs are intraepithelial lymphocytes (IELs). To investigate this, we developed functional in vivo confocal microscopy (Fun-IVCM) to investigate cell dynamics in the human corneal epithelium and stroma. We show that many immune cells resident in the healthy human cornea are T cells. These corneal IELs are characterized by rapid, persistent motility and interact with corneal DCs and sensory nerves. Imaging deeper into the corneal stroma, we show that crawling macrophages and rare motile T cells patrol the tissue. Furthermore, we identify altered immune cell behaviors in response to short-term contact lens wear (acute inflammatory stimulus), as well as in individuals with allergy (chronic inflammatory stimulus) that was modulated by therapeutic intervention. These findings redefine current understanding of immune cell subsets in the human cornea and reveal how resident corneal immune cells respond and adapt to chronic and acute stimuli.


Assuntos
Córnea , Epitélio Corneano , Animais , Humanos , Camundongos , Vias Aferentes , Inflamação , Microscopia Intravital
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...